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Abstract Whole soybean fatty acid contents were mea-

sured by near infrared spectroscopy. Three calibration

algorithms—partial least squares (PLS), artificial neural

networks (ANN), and least squares support vector

machines (LS-SVM)—were implemented. Three different

validation strategies using independent sets and part of

calibration samples as validation sets were created. There

was a significant improvement of the prediction precision

of all fatty acids measured on relative concentration of oil

compared with previous literature using PLS (standard

error of prediction of 0.85, 0.42, 1.64, 1.67, and 0.90%

for palmitic, stearic, oleic, linoleic and linolenic acids

respectively). ANN and LS-SVM methods performed sig-

nificantly better than PLS for palmitic, oleic and linolenic

acids. Calibration models developed on relative concen-

trations (% of oil) were compared to prediction models

created on absolute fatty acid concentration (% of weight)

and corrected to relative concentration by multiplying by

the predicted oil content. While models were easier to

develop in absolute concentration (higher coefficients

of determination), the multiplication of errors with the

total oil content model resulted in no net precision

improvement.

Keywords Partial least squares � Artificial neural

networks � Least squares support vector machines �
Near infrared spectroscopy � Fatty acids � Soybeans

Introduction

Modern society has developed food habits and industries

that favor fast foods and high fat diets. Fat intake has

been targeted as one of the most critical parameters to

control for reducing the risk of cardiovascular diseases

[1–4]. Linoleic and linolenic acids, essential poly-unsat-

urated fatty acids, lower the levels of low-density

lipoprotein cholesterol in the blood. This type of choles-

terol is thought to be responsible for accumulations in the

arteries [5, 6]. Research points to a balanced intake of

linoleic and linolenic acids to lower health risks [7].

Saturated fatty acids are also of interest for processing

purposes. Palmitic and stearic acids have demonstrated

useful properties for the production of margarine and

shortening [8, 9].

Soybean and canola oil are the only edible oils that

present a high level of both linoleic and linolenic acids

[10]. Certain uses of these oils, e.g., for frying, requires

hydrogenation, a process that adds hydrogen, but produces

trans fatty acids which increase the risk of heart diseases

[11]. Breeders have developed varieties of soybeans with

altered fatty acid profiles to match various applications

(low linolenic oils, low saturated oils) [12].

Near infrared spectroscopy (NIRS) is a fast, non-

destructive, and inexpensive technique for routine utiliza-

tion that has shown, for more than thirty years, its

usefulness in the control of grain quality [13–16]. NIRS has

been approved by the American Association of Cereal

Chemists (AACC) for determining protein content of

whole-grain wheat (Method 39-00) and by the American

Oil Chemists’ Society (AOCS) as a procedure providing

general guidelines (Procedure Am 1–92). Several authors

have published significant works on the prediction of fatty

acids by near infrared spectroscopy. Velasco et al. [17]
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reported the ability of NIRS to predict, in cross-validation,

oleic, linoleic and linolenic acids for intact rapeseed

against gas-liquid chromatography reference measurement

(r2 = 0.98, r2 = 0.95, and r2 = 0.96 respectively). Other

studies reported the ability of NIRS to measure fatty acids

in whole sunflowers achenes [18] and in peanut seeds [19].

In soybean, Pazdernik et al. [20] reported low correlations

between NIRS and fatty acid reference measurements on

whole grain (palmitic acid: r2 = 0.36, standard error of

cross validation (SECV) = 0.79%; stearic acid: r2 = 0.74,

SECV = 0.22%; oleic acid: r2 = 0.58, SECV = 0.77%;

linoleic acid: r2 = 0.61, SECV = 1.71%; linolenic acid:

r2 = 0.84, SECV = 0.68%), but better results on ground

samples (palmitic acid: r2 = 0.59, SECV = 0.52%; stea-

ric: r2 = 0.72, SECV = 0.19%; oleic: r2 = 0.83,

SECV = 0.56%; linoleic acid: r2 = 0.89, SECV = 0.91%;

linolenic acid: r2 = 0.89, SECV = 0.42%).

Lately, Nimaiyar et al. [21] published validation results

on whole soybean samples using an independent validation

set [palmitic acid: r2 = 0.40, root mean standard error

of prediction (RMSEP) = 0.79%; stearic acid: r2 = 0.24,

RMSEP = 0.39%; oleic acid: r2 = 0.59, RMSEP =

3.46%; linoleic acid: r2 = 0.76, RMSEP = 2.37%; linole-

nic acid: r2 = 0.84, RMSEP = 0.55%]. These results show

the lack of robustness of prediction models when applied to

new samples. This study as well as the one of Pazdernik et al.

was performed on a limited number of calibration samples

(70 or less). In 2006, Kovalenko et al. [22] published a larger

study of the prediction of fatty acids on whole soybean

samples using more calibration samples (600 or more) and

different regression techniques (linear and non-linear). They

reported good correlations between NIRS data and fatty

acids measured by gas chromatography for saturated acids

(palmitic acid ? stearic acid) [r2 = 0.91, standard error of

prediction (SEP) = 2.23%], palmitic acid (r2 = 0.80,

SEP = 3.16%), oleic acid (r2 = 0.76, SEP = 4.27%), and

linoleic acid (r2 = 0.73, SEP = 3.77%), but a more limited

relationship for stearic acid (r2 = 0.49, SEP = 0.47%) and

linolenic acid (r2 = 0.67, SEP = 1.74%) using partial least

squares (PLS) regression. Significantly better results were

obtained with non-linear regression techniques (ANN and

LS-SVM).

All the work cited above developed calibrations in rel-

ative concentrations of fatty acids (grams of fatty acid by

100 g of oil).

The objectives of this study were (1) to improve present

calibration performance by including the variability in fatty

acid composition present in the US market using both

linear and non-linear regression methods and (2) to eval-

uate the possibility of developing fatty acid calibrations in

absolute concentration (gram of fatty acid by 100 g of

sample). Predicted absolute concentrations are converted to

relative concentrations by dividing the predicted absolute

concentration by the predicted oil content of the same

sample.

Experimental Procedure

Samples, Spectra Collection and Reference Analysis

A set of approximately 900 whole US soybean samples

(400 g per sample or more) from crop years 2003 to 2006

were scanned on four near infrared instruments with a

pathlength of 30 mm. Foss Infratec Grain Analyzers 1229

and 1241 (FOSS North America, Eden Prairie, MN, USA)

and two Bruins OmegAnalyzerG (serial: 106110 and

106118) (Bruins Instruments, Puchheim, Germany) were

used. Both are transmittance units with a spectral range

from 850 to 1,048 nm at an increment of 2 nm. These

instruments were chosen because they are approved by the

US National Type Evaluation Program (NTEP) [23–25]

and are by consequence approved to perform analysis for

trade in the USA. Samples were run at room temperature.

Each sample was run simultaneously on the four instru-

ments. Oil content was determined by ether extract (AOCS

Method Ac 3-44) by Eurofins Scientifics, Inc., Des Moines,

IA, USA and the relative concentrations of palmitic acid

(C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic

acid (C18:2) and linolenic acid (C18:3) were analyzed by

gas chromatography using the method described by Ham-

mond [26] in the Department of Agronomy at Iowa State

University, Ames, IA, USA. The total saturated fatty acid

concentration was determined by adding for each sample

the relative concentrations of palmitic and stearic acids.

Absolute fatty acid concentrations were calculated by

multiplying relative concentrations expressed in percent of

oil by the oil content of the sample, from lab chemistry in

calibration situations and from predictions in validation

situations. Summary statistics for the calibration and vali-

dation sets are presented in Table 1.

Spectral Pretreatment and Outlier Detection

Raw spectral data (log (1/T) vs. wavelength) were cor-

rected for baseline and scattering effect by calculating their

second derivative spectra using the Savitzky–Golay [27]

algorithm (5-point window and 3rd order polynomial) and

each sample was normalized to the sum of the absolute

value of all variables (wavelength) for the given sample

and instrument (Fig. 1). Furthermore, variables were scaled

to zero mean and unit standard deviation. The detection of

outliers was performed on the fully pretreated spectra by

removing from the calibration set samples presenting a

Hotelling T2 and a Q residual value (eigenvalue of the

residual subspace) larger than the 95% confidence interval.
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Calibration Techniques

Partial least squares, a linear method, and artificial neural

networks and least squares support vector machines, two

non-linear regression techniques, were used to develop

calibration models for the fatty acids.

Partial Least Squares Regression

Partial least squares regression extracts from the spectral

data (X_matrix) the information that is related to the ref-

erence value of interest (Y_matrix). This extraction is

performed by calculating principal components or latent

variables that maximize the covariance between the

Y_matrix and all possible linear functions of the X_matrix

[28]. The choice of latent variable to include in the model

is usually determined by minimizing the SECV and limit-

ing overfitting. The use of PLS regression is rather simple

and the number of samples required is not a limitation.

Artificial Neural Networks Regression

Artificial neural networks is a technique, primarily devel-

oped for classification, based on a network of individual

interconnected neurons located on different layers (typi-

cally input, hidden and output layers). A weight and an

activation function are associated to each neuron and it is

the adaptation of these weights by back propagation that

allows ANN to fit the input data. ANN presents three main

drawbacks. The first is the amount of data needed (the

number of observation must be larger than the number of

weights to evaluate). The second difficulty lies in the

number of parameters to tune (activation function, network

structure, weight adaptation functions etc.) requiring

mastery of the technique. Finally, the error plane of ANN

can present local minima that do not represent the best fit

of the training data. A solid validation strategy must be

used to limit under and overfitting. The theory and appli-

cations of ANN to NIRS can be found in Williams and

Norris [29].

Least Squares Support Vector Machines

Least squares support vector machines was also developed

for classification purposes. LS-SVM has been developed to

perform accurately on data presenting non-linear relation-

ships with a limited number of observations. Similarly to

support vector machines classification that looks for the

maximum margin between clusters, LS-SVM tries to

minimize the prediction error relative to an error rate

determined by the user. The main advantage of LS-SVM is

Table 1 Reference data statistics for soybean samples used for calibration and validation

Parameters 2003–2005 samplesa 2006 samplesa

nb Average concentrationsc Range SD nb Average concentrationsc Range SD

Saturated 785 12.49 5.61–18.93 4.12 126 14.58 6.33–17.45 2.20

Palmitic 732 8.16 2.89–13.64 3.45 115 10.34 3.40–13.47 1.86

Stearic 750 4.32 2.62–6.81 0.84 135 4.24 2.48–6.54 0.84

Oleic 801 26.02 19.42–36.91 2.89 161 25.72 20.51–36.84 3.64

Linoleic 764 55.31 43.15–63.76 3.38 141 54.26 45.82–62.68 3.59

Linolenic 726 6.18 0.89–11.08 2.57 140 5.43 0.89–11.01 2.92

Oil 714 20.28 12.50–28.10 5.87 116 18.35 13.75–23.57 2.01

a 2006 samples were separated from 2003 to 2006 samples because they were used as separate validation set
b The number of sample differs between instrument due of the presence of outliers (spectral and chemical)
c Fatty acid concentrations were expressed in relative concentrations while oil concentrations were expressed in absolute concentrations

850 900 950 1000 1050

-0.2

-0.1

0

0.1

0.2

0.3

Wavelengths (nm)

N
or

m
al

iz
ed

 2
nd

 d
er

iv
at

iv
e 

of
 lo

g(
1/

T
)

Fig. 1 Calibration set after second derivative and normalization. A

scaling (mean zero and unit standard deviation) is necessary before

implementing regression methods
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that only two parameters need to be determined: the error

rate and the parameter of the kernel function. The error

plane presents only one minimum. However, its main

drawback is the computation time; it is exponentially

proportional to the size of the dataset and can take several

hours to perform on a set of several hundred samples.

Cogdill and Dardenne [30] provided a good overview of

LS-SVM. Kecman [31] is a reference for theoretical

aspects of both ANN and SVM.

Calibration and Validation Procedures

MATLAB R2007a (The MathWorks, Natick, MA) was

used to support all calculations. The pretreatment of the

data, the outlier detection and the development of PLS

models were performed with the PLS_toolbox 4.0.2

(Eigenvector Research, Wenatchee, WA); ANN prediction

models were created using the neural network toolbox v.

5.0.2 provided with MATLAB; and LS-SVM calibrations

were developed with the LS-SVMlab toolbox v. 1.5 for

MATLAB by Pelckmans et al. [32].

The ANN were created by first applying a principal

component analysis to the pretreated data. The networks

had one hidden layer with a tangent sigmoid transfer

function and a linear activation function on the output

layer. The number of neurons as well as the tuning of the

parameters was based on the SEP calculated from inde-

pendent validation sets (a description of the different

validation sets is given later in the text). To limit overfit-

ting, a randomly selected stop set representing 10% of the

calibration set was used.

Parameters of LS-SVM were calculated using an opti-

mization by exhaustive search on 25% of the calibration

set. Locally optimized parameters were applied on the

entire dataset and validated. This operation reduced the

calculation time without deteriorating the SEP.

Validation Strategies

Three validation strategies were intended. Igne et al. [33]

demonstrated the impact of the variability of next year

samples on the calibration process. Moreover, no study on

the measurement of fatty acids on whole soybean by NIRS

attempted to validate a model on next year samples. Thus,

for each instrument, each fatty acid and each regression

technique, three calibration sets and three validation sets

were created. The first scenario used samples from 2003 to

2005 where 80% were used for calibration and 20% for

validation (Scenario 1). The second used all samples from

2003 to 2005 for calibration and models were validated on

2006 crop year samples (Scenario 2). The last scenario

used 80% of the samples from 2003 to 2006 for calibration

and the remaining 20% were used for validation (Scenario

3). These validation strategies were intended to evaluate

the impact of including new samples in the calibration pool

for parameters subject to an important variability from year

to year due to breeding strategies.

Model Evaluation and Comparison Parameters

SEP was used to evaluate the precision of each model. SEP

is the standard deviation of differences between the

Y_matrix of validation and the prediction matrix ŷ: The

models’ fit was evaluated using the coefficient of deter-

mination (r2) that represents the percentage of variability

explained by the model.

Fatty Acid Calibration on Absolute and Relative

Concentration

Two types of models were tested: models with fatty acids

expressed in relative concentration (grams of fatty acids

per 100 g of oil) and models with fatty acids expressed in

absolute concentration (grams of fatty acid per 100 g of

grain). The first situation predicted directly in percent of

oil, the industry standard. The second used absolute con-

centrations during the calibration process, but absolute

predictions were transformed to relative concentrations by

multiplying them with the predicted oil content of the same

sample.

Results and Discussion

Fatty Acids Expressed as Percentage of Oil

PLS, ANN, and LS-SVM validation results for the four

instruments were averaged because the difference within

instruments for the prediction of the same fatty acid was

not significant (95% confidence interval). Table 2 presents

validation results for each regression method, each fatty

acid, and each validation scenario.

Validation Scenario 1 and 3

When comparing coefficients of determination of valida-

tion scenarios 1 and 3, where the variability of the

validation set is more or less present in the calibration set,

with those obtained by Kovalenko et al. [22] who per-

formed the same type of validation strategies, we observed

a good agreement for saturated and linoleic acids (Kov-

alenko et al. used spectra from 1991 to 2003; only the 2003

spectra were reused in this study). Predicted values of

palmitic, stearic, and linolenic acids were in very good

agreement with chemistry values while Kovalenko et al.

reported lower r2. The relationship between predicted and
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chemistry values was the weakest for oleic acid and lower

than what the literature reports. However when comparing

SEPs, we observed a significant improvement over reports

in the literature. For PLS, and validation scenario 3, SEPs

were reduced by 61, 73, 57, 62, 57 and 48% for saturated,

palmitic, stearic, oleic, linoleic, and linolenic acids

respectively.

Validation Scenario 2

This validation strategy, representing conditions of com-

mercial application of the models, revealed that the

variability from year to year for fatty acids profiles was a

major source of error. While saturated and linolenic acid

models performed fairly well when predicting 2006 crop

samples with PLS (r2 = 0.76 and 0.77 respectively),

palmitic, oleic, and linoleic acids calibrations yielded r2

values barely usable for screening and the stearic acid

model was not utilizable. In terms of precision, SEPs

were globally doubled compared to the previous valida-

tion scenario but remained always under SEPs provided

by Kovalenko et al. This situation is a further proof that

the annual variability of composition is important, and

more samples are needed in the calibration set to limit the

increase of SEP. This also shows that the true test for a

prediction model is its ability to predict totally indepen-

dent samples. Cross-validation and validations on similar

samples are only approximations of the model

performances.

Comparison Between Regression Techniques

Figure 2 presents SEPs, averaged per instrument, from

PLS, ANN, and LS-SVM models for each fatty acid and

validation scenarios 2 and 3. The effect of the regression

methods was parameter and validation strategy dependent.

Table 3 summarizes the differences between validation

strategies and regression methods. In eight cases out of

twelve, LS-SVM gave the lowest SEPs but these results

were significant for only three situations (a = 5%). ANN

gave significantly lower SEPs in three cases and PLS in

one case (a = 5%). It is interesting to note that PLS was

the best technique for the validation of the stearic model by

next year samples, a parameter that is hardly predictable by

NIRS in the presented circumstances.

Fatty Acids Expressed in Absolute Concentration

and Corrected to Relative Concentration by NIRS Oil

Prediction

The use of absolute fatty acid concentration was suggested

by Dr. Steven Wright, Pioneer Hi-Bred International Inc.

[34] because of the nature of NIRS to determine content by

counting molecules. Soybean oil calibrations were devel-

oped on the fatty acid calibration samples. Table 4 presents

the different oil prediction model statistics. Predictions by

these models were multiplied by predicted fatty acid con-

centrations on absolute scale to obtain fatty acids in grams

per 100 g of oil. Validation statistics were averaged by

Table 2 Validation statistics of the six fatty acids from calibrations developed with fatty acids expressed in relative concentration

Regression Validation scenarios Fatty acids

Saturated Palmitic Stearic Oleic Linoleic Linolenic

r2 SEPd r2 SEP r2 SEP r2 SEP r2 SEP r2 SEP

PLSe Scenario 1a 0.97 0.72 0.97 0.64 0.85 0.30 0.59 1.62 0.77 1.51 0.95 0.64

Scenario 2b 0.76 1.26 0.59 1.24 0.09 0.66 0.48 1.77 0.50 2.07 0.77 1.44

Scenario 3c 0.95 0.85 0.93 0.85 0.66 0.42 0.60 1.64 0.72 1.67 0.91 0.90

ANNf Scenario 1 0.98 0.57 0.98 0.49 0.86 0.29 0.56 1.70 0.79 1.45 0.95 0.52

Scenario 2 0.70 1.18 0.66 1.08 0.08 0.69 0.35 2.00 0.46 2.17 0.77 1.41

Scenario 3 0.97 0.69 0.96 0.62 0.68 0.40 0.59 1.64 0.70 1.71 0.83 0.66

LS-SVMg Scenario 1 0.97 0.67 0.97 0.61 0.86 0.29 0.57 1.40 0.78 1.48 0.93 0.64

Scenario 2 0.71 1.16 0.66 1.07 0.07 0.76 0.57 1.49 0.62 1.60 0.77 1.41

Scenario 3 0.96 0.77 0.94 0.80 0.73 0.37 0.59 1.65 0.72 1.66 0.89 0.86

a 80% of samples from 2003 to 2005 constitute the calibration set, the 20% remaining form the validation set (e.g., 2006 samples not used)
b Samples from 2003 to 2005 constitute the calibration set, samples from 2006 the validation set
c 80% of samples from 2003 to 2006 constitute the calibration set, the 20% remaining form the validation set
d Standard error of prediction, expressed in % of oil
e Partial least squares
f Artificial neural networks
g Least squares support vector machines
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instrument for each validation strategy and each fatty acid

because results among instruments were not significantly

different (a = 5%). Figure 3 reports, for validation sce-

nario 3 (80% calibration, 20% validation with all years

included), SEPs in relative concentration and SEPs derived

from absolute concentration (predictions in % of weight

corrected to % of oil by multiplying by the oil content) as

well as r2 of fatty acid models developed on absolute

concentration (ra
2), r2 of fatty acid models developed on

relative concentration (r2) and r2 of models developed on

relative concentration derived from predicted oil (rr
2). Only

LS-SVM results were reported since it was the overall best

regression method and trends observed with PLS and ANN

were similar.

For stearic, oleic, and linoleic acids, rr
2 was significantly

lower than ra
2; for palmitic and linolenic, coefficients of

determination were not significantly different; and for

saturated, rr
2 was significantly higher than ra

2.

Also, when comparing ra
2 with r2, there was significant

improvement of the prediction models for oleic and linoleic

acids when developing models on absolute value with PLS.

However, when comparing rr
2 with r2 and SEPs, models

based on relative concentrations performed equivalently

for saturated, palmitic and linolenic acids, worse for oleic
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Fig. 2 Comparison of the precision for the different regression

models [Partial least squares (PLS), Artificial neural networks (ANN),

and Least squares support vector machines (LS-SVM)]. a Validation

strategy where 2006 crop samples were predicted by a calibration set

with samples from 2003 to 2005. b Validation strategy where the

validation set was constituted by 20% of the samples from the original

calibration set (samples from 2003 to 2006 crop years)

Table 3 Difference between regression methods for fatty acid

prediction

Fatty acids Validation strategy SEPsa

Lower Higher

Saturated Scenario 2b LS-SVM* ANN* PLS

Scenario 3c ANN** LS-SVM* PLS

Palmitic Scenario 2b LS-SVM ANN PLS

Scenario 3c ANN* LS-SVM PLS

Stearic Scenario 2b PLS* ANN* LS-SVM

Scenario 3c LS-SVM ANN PLS

Oleic Scenario 2b LS-SVM** PLS* ANN

Scenario 3c LS-SVM ANN PLS

Linoleic Scenario 2b LS-SVM* PLS ANN

Scenario 3c LS-SVM PLS ANN

Linolenic Scenario 2b LS-SVM ANN PLS

Scenario 3c ANN* LS-SVM PLS

PLS partial least squares, ANN artificial neural networks, LS-SVM
least squares support vector machines

* Significant difference

** Significantly different on its own
a Standard Error of Prediction
b Samples from 2003 to 2005 constitute the calibration set, samples

from 2006 the validation set
c 80% of samples from 2003 to 2006 constitute the calibration set, the

20% remaining form the validation set

Table 4 Statistics for total oil prediction models for each instrument

and regression method

Instruments PLSa ANNb LS-SVMc

r2 SECVd r2 SECV r2 SECV

Infratec 1229 0.99 0.16 0.99 0.12 0.99 0.11

Infratec 1241 0.98 0.18 0.98 0.18 0.98 0.17

OmegAnalyzerG 106110 0.98 0.17 0.98 0.15 0.98 0.16

OmegAnalyzerG 106118 0.98 0.18 0.99 0.16 0.99 0.15

a Partial least squares
b Artificial neural networks
c Least squares support vector machines
d Standard error of cross validation
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acid, and better for stearic acid. No changes were observed

for linolenic acid.

While models developed on absolute concentrations

might have had a better precision, since fatty acid values

were converted to relative units, SEPs were often equiva-

lent, even higher for some elements. This situation is

probably caused by the compounded error in the oil and

absolute fatty acid models; errors of oil models, as low as

they were, were multiplied by the error of fatty acid pre-

dictions on absolute concentration and as a consequence,

increased the total error of the model given in relative

concentration. Changing market practice from relative to

absolute concentrations would improve NIRS results. NIRS

calibration models developed on absolute concentration

using oil and fatty acid contents measured by reference

methods would limit the impact of the oil prediction error

in the final result.

Local Regression for Linolenic Acid

Among fatty acids described here, linolenic acid is par-

ticularly of interest for breeders. Figure 4 presents the

calibration results of soybean linolenic acid. This shows

clearly that two clusters are mostly represented: high and

low linolenic concentrations. While the calibration curve

for linolenic acid concentration between 6 and 10% looks

good, difficulties are apparent for concentrations lower

than 3%. At this point, NIRS can be used to screen high

and low linolenic samples. To investigate the possibility to

predict more precisely between 1 and 3%, a local PLS

model on Infratec 1229 was developed with these ‘‘low

linolenic’’ values. Figure 5 presents the calibration and the

validation curves for linolenic acid with values up to 3%

and the validation of the model with scenario 3 [80% of

samples from 2003 to 2006 in calibration (208 samples)],

and the 20% remaining in the validation set (51 samples).

The r2 is 0.52 and the SEP is 0.42%. The model precision is

not as good as those obtained when predicting the entire

range. However, the values measured by chemistry

between 0.9 and 1.2% were not well predicted. This situ-

ation shows the difficulty that NIRS faces when predicting

low linolenic acid concentrations. When using the valida-

tion scenario 2 (2003–2005 in calibration, 2006 samples in

validation), we obtained completely different results with a

r2 of 0 and a SEP of 0.78% (Fig. 6). This would signify that

more samples would be necessary to improve the
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calibration at low linolenic acid concentrations, if possible

at all on whole grain analysis.

Conclusions

Near infrared spectroscopy is becoming a tool of choice for

the determination of whole soybean fatty acid profiles. This

study presented a lower error of prediction than previous

studies. Non-linear regression methods appeared as a nec-

essary improvement for the development of the technology.

The variability of the sample included in calibration and

validation was proven to impact prediction model statistics.

Models should undergo a validation with external samples

since cross validation methods give only an approximation

of the real performances. Instrument software will need

upgrades because no instrument supports all nonlinear

methods in their operating routines.

Comparison between models developed on relative

and absolute fatty acid concentrations showed that even

though models were easier to develop using absolute

concentrations, the error generated by the prediction of oil

used to correct absolute predictions to relative contents

increased the final error. These results are partially in

agreement with Wright et al. (2003) showing that the non-

linear relationship between fatty acid content and absor-

bance could be corrected by using absolute concentrations.

However, the correction to relative concentrations by the

NIRS-predicted oil content degraded the calibration preci-

sion. Present results indicate that absolute concentrations

could be beneficial for the fast screening and quality control

of soybean samples.
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